Meta-Modeling
Relevance Feedback
process with ATOM?
Diseno de Software basado en modelado y simulaciéon

Alejandro Bellogin Kouki
alejandro.bellogin@uam.es

February 4, 2008

1 Introduction

In the field of Information Retrieval one of the biggest problems is to know which is the goal of the user,
her information needs, but sometimes she does not even know which are these needs. This is because a
lot of reasons, for example the user has little knowledge of the collection or the retrieval system, perhaps
she does not know how to utilize the query language used by the system (natural language versus bag of
words), furthermore query ambiguity does exist because of synonymy and hyponymy (i.e., python may
refers to the snake or to the programming language).

From all this one conclusion arises: creating good search queries is hard. A possible solution to this
problem is the query reformulation, a manual process which requires quite a lot of intellectual effort.
The relevance feedback process comes from making the query reformulation a controlled and automatic
process.

In the next section we will explain in detail this process, how we have modeled it using the ATOM?
tool and some advantages we have obtained from this (mainly simulation and code generation).

2 Proposal

This work started with the meta-model of the relevance feedback process, this meta-model is enough
general to create a useful domain-specific visual language and quite simple to be understandable by an
ATOM?3-experienced user who wants to know how this process works (and play with its parameters) or
wants to show to other people its workflow.

In figure 1 we can see the class diagram used in this proposal. In section 2.3 there is a more concrete
definition of relevance feedback, with its possibilities and history. Now we are going to focus on the
(meta-)modeling process and in sections 2.1 and 2.2 we will show two features based on this model and
made possible thanks to the use of ATOM?.

Although the presented model is very general and it would allow a lot of different configurations, we
are interested in the explicit case, which is the one in which the user can actively be involved and, because
of that, is very appropriate for the simulation task. Besides that, there are some issues we can not achieve
for the sake of simplicity and completeness (see section 3).

Primarily, this model is used to generate some code that the mentioned tool ATOM? presents to the
user in a more friendly way, as buttons and/or images (see figure 2). We have to notice that the abstract

cd: modelo J
Judge Context
-name: String -iterint
-phaseint
click
User Analise Wi knplicRToclrniques SearchEngine _isRelevant:boolean
<]
[S
cantains
i
Docunent
-ickint
— Eyetracking Clickthrough -terms{St.rmg[]
-path: String
uses
*
rank
-position:int
Query executes £
et String
~relewantT erm = String
-nonrelevantT erm s Strin RFAigotiti
= - selectsterms with Terw Mbdel
-nDocsint
expands : —————————
-nTermsint
-hiter:int +getTerms(Tvok
-weighthl eve double [l 7
Rankiddel ranks wi
rankDo)i ImplicitFeedback | ExplicitFeedback | BlindFeedback
FaN P
vsM LanguageModel |ProbabilistichModel DocumentCount | TermFrecuency TF-IDF
VS MWithContext

Figure 1: Class diagram for the relevance feedback model

classes are not allowed to be generated, because they are not instantiable. With these buttons the user
can create her own model!, with the condition that this model has to be conformed to the meta-model

I This is done loading as a meta-model the file RF.py generated automatically by ATOM3 from the file RF_CD_md1.py, in

presented previously. This is done automatically by ATOM?, checking all the constraints included in the
model (cardinality, inheritance, connectivity). Here we have one of the reasons why it is so important to
have a complete and perfect (but simplified) model about the process to study, because it could produce
inconsistencies or undesirable situations in its instances.

RF

Mew User | Mew SE |

Mew Querny | Mew ImplicitFB |

New ExpicilFB | New BindFE |

NewvsM | Newid |

NewProbM | NewysMwitnC |

MNew DocCount | MNew TF |

NewTFIDF | NewbDoo |

Mew Evetracking | Mew Clickthrough |

Mew Context | Generate code |

Figure 2: ATOM? presents these buttons to the user to make her own models

Once the user has created her model (as an instance of the meta-model presented in figure 1) she
can do a simulation or generate code if it is enough specific (i.e. there must be some documents in the
model). Now we are going to explain how these tasks can be carried out, always based on the principles
of relevance feedback (section 2.3) within the presented framework (ATOM? and meta-model as in figure

1).

2.1 Simulation

This task is very interactive and it is intented to be very interesting for the final user, because she can
try different configurations and test, in a primitively way due to the simplications made, whether these
configurations produce the desired effects or not, furthermore she can do all this without writing a line
and with a very intuitive interface, specially designed for this problem. Moreover, if she wants to compare
these results with the real ones (because she is satisfied with the results or they are a bit strange) she only
has to generate the code and try it for herself.

Here we have a list of the different features adjustable in this framework|2]:

Type of algorithm You can choose between the different kinds of the relevant feedback algorithm:
explicit, implicit, blind.

Ranking model This is the model used to rank the documents according to the query, the choices are:
vector space model (VSM), language model, probabilistic model and VSM with context?.

Term model This model says how the terms are selected within the documents, this process can be
done attending to the term frecuency in a document, the number of times a term appears in all
the documents or with a combination of both (tf-idf factor, term frecuency and inverse document
frecuency).

Number of iterations This is the number of times the simulation will run as maximum.

which we have created the meta-model formerly
2By the moment it is only implemented the first one: vector space model

Number of terms This is the number of terms that will be chosen from each document.

Weight for the new terms The new terms added to the query will have a fixed weight, defined by this
parameter.

Parameters of the feedback formula Other parameters required in the formula 1 (a,b, ¢).

Collection and query You can choose which is the query the system will execute, and against which
set of documents.

For the simulation we have also had to define some graph grammars, if we assume the instance start
with the phase set to SEARCH, since the first phase (INIT) is provided to define the documents and their
relations, the following are the rules we have used in this simulation:

1. First rules are the ones which rank the documents according to the query, they have knowledge about
the terms the documents contain and the formulated query, depending on the type of algorithm and
the choice of the model to rank and choose the terms, the results (ranking) may vary. There are
two different rules because when the feedback step has finished and the system start again we have
to delete the previous relevance assessments given by the user. We can see them in figure 3 with
their corresponding Negative Application Constraint (NAC) to avoid the infinite loop this rule would
cause, because if this NAC would not exist the left hand side of both rules could always be executed.

2. The next rule by priority is the one which changes the state of the system (phase), it changes from
SEARCH to FEEDBACK, with the meaning that now it is the turn to the user to vote which documents
are relevants for her and which not.

3. The next two rules are equivalents and represent a user who votes for a document to be relevant or
not. We can see them in figure 4. They also have a NAC to avoid an infinite loop as before.

4. The last rule to be executed by priority is the one which checks if the number of iterations has been
reached, and in other case it changes the phase to SEARCH, modifies the query according to the
algorithm and starts again.

Now we are going to explain the steps to follow to run the simulation properly.

2.1.1 Steps to simulate

1. First of all, we have to do a model or instance of our meta-model, for this example we are going
to use the one already created and with the name ex_RF_VSM_TFIDF_mdl.py (in this example we
have modeled a system with a user and a query defined, five documents and a search engine using
an explicit feedback algorithm which uses as rank model the VSM and as term model tf-idf). We
open it as a model. We have to see something like the figure 5.

2. Then, we go to Transformation menu and click on Ezecute transformation, after clicking in the new
button we select the file gram_EF_VSM_TFIDF.py (it contains the grammar rules generated from the
file gram_EF_VSM_TFIDF_mdl.py). We can add other grammars, but this example will only work
for this specific grammar. It is recommended to tick the next options: STEPbySTEP, Sequential
Manual (in Execution) and Dangling Condition, besides to let ticked the Injective option.

3. When we click in the 0k button, we will see a new window telling us which grammar is being
executed, which is the last executed rule and three buttons more: Step, Continuous and Close. We
will use the first and last buttons, the former will let us to move step by step in the simulation and
choose which object is going to interact with the system, the latter will end the simulation. Some
steps are shown in figures 6, 7, 8.

LHS

docs= <ANY) s
e e
N S

~ //

/
i

<ANY>
CBNY>

ight- R
AN BN @\
<A

RHS onte;
teCOPIED)
<COPEED
RHS e
\ . g
e O e | CoPED T ‘
COPEDY
<COPIED A

D
<CoPED> o

e A

Figure 3: First two rules to be executed (if possible)

LHS LHS
P
<aat>
<y
<ot ey
<ANY>
>
ANT> SN Te<BNY>

Context
Iter=ANY>
NAC Feedback

<ANY>
A
EF CANY> :AA‘N'VY)
docs= <ANY> —
‘a[m < W>

weight= GANY> o NS
2ANANT AN
RHS = N
p— A NGANTeANY>
[A
<copEDs
E:D Feofen
4COPEDS .
i i
|
weight= SCOPIED <COPEDS
GOPERPEDOFIED> <copED>
<coneD>
<COPIED> &OPHERPIEBOPIED>

Figure 4: Two rules that represent a vote for the user

We have to say that it is possible to change this example however we want, you can modify any of the
parameters listed before and run the simulation in that situation.

2.2 Code generation

Besides simulation, in this work we have tried to generate code from a model, instance of our original
meta-model. For this task, we have used the Terrier® platform to get a program which indexes documents
and retrieves them when a query is given, following the relevance feedback process.

Unfortunately we were not able to complete this program on time, but we do generate code in the
form of a configuration file using some declared functions in RFCodeGeneratorHelper.py. In this way,
the user has to create a model in ATOM?® and, if it is valid, a configuration file is generated when she
presses the Generate code button. If she instances a query object, the system will use this query as an
input, and in other case it will ask for one.

We have to note that the generated configuration file is like the ones used by Terrier, but we did not
succeed in developing a program acting like the relevance feedback process (we were able to index the
documents and to retrieve results, but not to repeat the process). In any case, we think this is one of the
better ways to achieve the problem of generating code: create something that the user can use without
touch anything and plug it into other program, also unknown for the user.

2.3 Relevance feedback

For a better comprehension of this work it is necessary to understand the relevance feedback process, its
importance and scope.

The relevance feedback process was introduced in the 1960s as a controlled, automatic process for
query reformulation [5]. The query formulation tries to solve the problem that users normally use queries
that consist of 1 to 3 terms and typically contain very little contextual information [3].

Its main idea consists in choosing important terms from previously retrieved documents that have
been identified as relevant by the user and using them to get a new, better query. An analogous process
can be done with the documents identified as nonrelevant, deemphasizing those terms in any future query
reformulation. The goal of this process is to approach the query to the relevant documents and to move
away from the nonrelevant ones.

This can be illustrated in the following algorithm:

o Identify the N top-ranked documents (using a rank model)

Identify all terms from the N top-ranked documents

Select the feedback terms (with one of the term models)

Merge the feedback terms with the original query (with formula 1)

Identify the top-ranked documents for the modified queries (i.e.: start again with the reformulated
query)

All this process comes from the analysis of how to obtain the optimal request [6]. We start considering
Qo the query the user entered. The system then formulates a new query ;. This new query should be
closer to the optimal query as we already explained. The success of this process will depend on how good
the initial query is and on how fast query @Q,, converges to the optimal query.

Actually, we are searching an optimization function f:

Ql = f(Q07R7‘S’)

3http://ir.dcs.gla.ac.uk/terrier/

Context

DSBS

i]

AB Iter= 0 oA TIOM3 deplog\rf@cs\ce
Search refevance

infarmation
retrieval
feedback
user

7

feedback
relevance
feedback
relevance

deplovhrilhassun
relevance

~

rite:s
i 'e

relevance feedback

ranks with kelect terms with ontain:

VSM

school
tawn

b adrid
tourism

cohAT] deplovhilhg-shdo
pail

N3

CNAT) deplopsiflhasshou
exphoit chATOM3I deployhrBupcshin
informatiorn

CONSECUENCES
bild retricyal
tawr TelEvance
high feedback
explicit
Figure 5: Example used in the simulation
DSEMS Context 0
AB lter= O 043 depl
Search relevance
information
T retrierval
vy SN
Lser

executes

1

rites

Cowatains

EF

feedback
TElEvance
feedback
TElEvance

deplopsilhasshun
relevance

docg= 2

Erpands| e o3 taing
Ee &

[0.3

relevance feedba /ﬁb_ Se=0.0 3 E‘;\P depl

school
tar

I adrid
tavrism

2

rarks with kelect terms with ortaing
VSM
AT deplovhrilraesiou L 3 denloshiBhosit
geoicl infarmation

co_nsecuences retrieval
build relevance
town feedback
high explicit
Figure 6: Two documents already ranked (search phase) by the system

DSEMS Context 1
AB lter= 0 SATOM3 depling
Feedback WEEHENES
itfarmation
retrieyval

feedback
user

executes

relevance
feedback
relevance
feedback
Televance

True

relevance feedba

VSM

infarmation
CONSECUENCEes rekrieval
buwild relevance
town feedback

explicit

high

Figure 7: Some documents voted (feedback phase) by the user

executes

retrieval information model vector user

Figure 8: First iteration done, note the expanded query.

where Qg is the initial query, R is the subset of the retrieved set that the user thinks are relevant, and S
are the documents that the user thinks are nonrelevant within the retrieved documents. The set R should
be given a positive sign, because these documents are wanted, for the same reason the set S must receive
a negative sign. This suggest the following function:

fl@,R,S)=qg+a) R-B> S

This formula is like the one written by Rocchio in [4]:

Q = aQ+b-Y R—c > 8 (1)

where () is the original query vector,)’ is the new query vector, R the set of relevant document vectors,
S the set of nonrelevant ones and a,b, ¢ are constants (Rocchio weights). Typically a = 1,b+ ¢ = 1, but
there are some variations [2]:

e a=1,b=1/|R|,c=1/|S|

ea=b=c=1

Use only first n documents from R and S

e Use only first document of S

e Do not use S (¢ =0)

There are also some variations in the way the system sorts the relevant terms from each document:
e By the number of documents that contain the term ¢ (n)

e By the number of occurrences of term ¢ (¢f)

e By n - idf, where idf is the inverse document frequency, obtained by dividing the number of all
documents by the number of documents containing the term

e By tf-idf

When the system presents the documents to the user it has to rank them, this is a very important
decision but the more common model used is the Vector Space Model (VSM), in which the distance
(similarity) between two documents is determined by the following formula:

di - dy

cos) = ———
[d[]|dz]|

where d; are document vectors, where each dimension corresponds to a separate term, in the classic form
of VSM their coordinates are weights corresponding to the ¢ f - idf factor.

After all these formulae, does relevance feedback have any advantage? Yes, but it also has some
inconvenients:

Advantages e Relevance feedback usually improves average precision by increasing the number of
good terms in the query
e It hides to the user the details of the query formulation process
e It is collection independent

e It breaks down the search operation into a sequence of small search steps, designed to approach
the wanted subject area gradually

e It provides a controlled query alteration process designed to emphasize some terms and to
deemphasize others, as required in particular search environments

Disadvantages e More computational work

e Easy to decrease effectiveness (one horrible word can undo the good caused by lots of good
words)

e It works only on a per query basis, so each time a user issues a new query a new model has to
be constructed

Finally, we can classify the relevance feedback process by the element who gives feedback:
Explicit feedback Feedback is given by the user.

Implicit feedback Feedback is given by the system after infering the user needs through her previous
actions (which documents she views and for how long).

Blind / Pseudo feedback Feedback is given by the system automatically, assuming that the top n
documents in the result set are relevant.

We have focused our explanation in the explicit case, because this is the one which involves the user
in the feedback and, for this reason, gets results closer to the ones expected by the user.

3 Future work and conclusions

The use of ATOM? tool for metamodeling our process has provided us a lot of advantages (such as the
possibility of creating a visual language or the described simulation) but it also has made impossible to
do, in the time available for this work, some desirables things, such as the followings:

e This work has been centered in the explicit form of the relevance feedback, nevertheless it could be
extended to provide the same functionality, for example, simulation, to the other forms (implicit
and blind feedback).

e Although we have included in our model some search models (vector space model, language models,
...) reaching their complexity and accuracy is impossible, however this was not the goal of this
proposal, but to show in a simple way how the relevance feedback process works and simulate it
easily with different parameters.

e It would also be interesting analyzing the properties of some given model or instance, properties such
as reachability, boundedness or the existence of single-paths[1]. These properties could be studied
with a transformation into Petri nets or similar.

e About the code generation it would be complete if the aforementioned program would be fully
developed.

In this work we have modeled in detail, at least theoretically, the process known as relevance feedback.
We have also provided a simulation for the special, original case of explicit feedback, in which the user is
the one who marks as relevant / not relevant each result

For making all this possible, it has been needed deep comprehension of the process to study (relevance
feedback) and of almost every topic in the current course.

10

References

[1] J. Esparza and M. Nielsen. Decidability issues for petri nets - a survey. Bulletin of the European
Association for Theoretical Computer Science, 52:245-262, 1994.

[2] David Grossman and Michael Lee. Relevance feedback. Lecture, 2001.

[3] Chris Jordan and Carolyn Watters. Extending the rocchio relevance feedback algorithm to provide
contextual retrieval. pages 135-144. 2004.

[4] J. J. Rocchio. Relevance Feedback in Information Retrieval, chapter 14. The SMART Retrieval
System—Experiments in Automatic Document Processing. Prentice Hall, Englewood Cliffs, NJ, 1971.

[5] Gerard Salton and Chris Buckley. Improving retrieval performance by relevance feedback. pages
355-364, 1997.

[6] Mark van Uden. Rocchio: Relevance feedback in learning classification algorithms.

11

	Introduction
	Proposal
	Simulation
	Steps to simulate

	Code generation
	Relevance feedback

	Future work and conclusions

